logo nano spa 1
  • Cabecera 1
    nanoscience and nanotechnology: small is different
  • Inicio
  • Magnetic Nanoparticles
  • Publications

Publications

Multifunctional magnetic nanoparticles elicit anti-tumor immunity in a mouse melanoma model. Lafuente-Gómez N., de Lázaro I., Dhanjani M., García-Soriano D., Sobral M.C., Salas, Gorka, Mooney D.J., Somoza, Álvaro. Materials Today Bio, 23, (2023). DOI: https://doi.org/10.1016/j.mtbio.2023.100817

Nanomedical research and development in Spain: improving the treatment of diseases from the nanoscale. Fernández-Gómez P., Pérez de la Lastra Aranda C., Tosat-Bitrián C., Bueso de Barrio J.A., Thompson, Sebastian, Sot, Begoña, Salas, Gorka, Somoza, Álvaro, Espinosa, Ana, Castellanos M., Palomo, Valle. Frontiers in Bioengineering and Biotechnology, 11, (2023). DOI: https://doi.org/10.3389/fbioe.2023.1191327

Tuning the exchange-coupling effect in raspberry-like ?-Fe2O3@CoO nanoparticles engineered through the single variation of the surfactant concentration in the synthesis process. Bidaud C., García-Soriano D., Sánchez E.H., Grenèche J.-M., De Toro J.A., Varela M., Dhanjani M., Bollero, Alberto, Salas, Gorka. Materials Chemistry Frontiers, , (2023). DOI: https://doi.org/10.1039/d2qm00834c

Tunable Control of the Structural Features and Related Physical Properties of MnxFe3-xO4Nanoparticles: Implication on Their Heating Performance by Magnetic Hyperthermia. Del Sol Fernández S., Odio O.F., Crespo P.M., Pérez E.O., Salas, Gorka, Gutiérrez L., Morales M.D.P., Reguera E.. Journal of Physical Chemistry C, , (2022). DOI: https://doi.org/10.1021/acs.jpcc.2c01403

Synergistic immunomodulatory effect in macrophages mediated by magnetic nanoparticles modified with miRNAs. Lafuente-Gómez N., Wang S., Fontana F., Dhanjani M., García-Soriano D., Correia A., Castellanos M., Rodriguez Diaz C., Salas, Gorka, Santos H.A., Somoza I.. Nanoscale, , (2022). DOI: https://doi.org/10.1039/d2nr01767a

Fine Control of In Vivo Magnetic Hyperthermia Using Iron Oxide Nanoparticles with Different Coatings and Degree of Aggregation. Luengo Y., Díaz-Riascos Z.V., García-Soriano D., Terán, Francisco, Artés-Ibáñez E.J., Ibarrola O., Somoza, Álvaro, Miranda, Rodolfo, Schwartz S. Jr., Abasolo I., Salas, Gorka. Pharmaceutics, 14, (2022). DOI: https://doi.org/10.3390/pharmaceutics14081526

Iron oxide-manganese oxide nanoparticles with tunable morphology and switchable MRI contrast mode triggered by intracellular conditions. García-Soriano D., Milán-Rois P., Lafuente-Gómez N., Navío C., Gutiérrez L., Cussó L., Desco M., Calle D., Somoza, Álvaro, Salas, Gorka. Journal of Colloid and Interface Science, 613, 447 (2022). DOI: https://doi.org/10.1016/j.jcis.2022.01.070

Superparamagnetic-blocked state transition under alternating magnetic fields: towards determining the magnetic anisotropy in magnetic suspensions. Cabrera D., Yoshida T., Rincón-Domínguez T., Cuñado J.L.F., Salas, Gorka, Bollero, Alberto, Morales M.d.P., Camarero, Julio, Terán, Francisco. Nanoscale, 14, 8789 (2022). DOI: https://doi.org/10.1039/d2nr00808d

Influence of coating and size of magnetic nanoparticles on cellular uptake for in vitro mri. Cortés-Llanos B., Ocampo S.M., de la Cueva L., Calvo G.F., Belmonte-Beitia J., Pérez, Lucas, Salas, Gorka, Ayuso-Sacido Á.. Nanomaterials, 11, (2021). DOI: https://doi.org/10.3390/nano11112888

Smart modification on magnetic nanoparticles dramatically enhances their therapeutic properties. Lafuente-Gómez N., Milán-Rois P., García-Soriano D., Luengo Y., Cordani M., Alarcón-Iniesta H., Salas, Gorka, Somoza, Álvaro. Cancers, 13, (2021). DOI: https://doi.org/10.3390/cancers13164095

Infrared-Emitting Multimodal Nanostructures for Controlled In Vivo Magnetic Hyperthermia. Ximendes E., Marin R., Shen Y., Ruiz D., Gómez-Cerezo D., Rodríguez-Sevilla P., Lifante J., Viveros-Méndez P.X., Gámez F., García-Soriano D., Salas, Gorka, Zalbidea C., Espinosa, Ana, Benayas A., García-Carrillo N., Cussó L., Desco M., Terán, Francisco, Juárez B.H., Jaque D.. Advanced Materials, , (2021). DOI: https://doi.org/10.1002/adma.202100077

Assessing the parameters modulating optical losses of iron oxide nanoparticles under near infrared irradiation. Lozano-Pedraza C., Plaza-Mayoral E., Espinosa, Ana, Sot, Begoña::102::600, Serrano A., Salas, Gorka, Blanco-Andujar C., Cotin G., Felder-Flesch D., Begin-Colin S., Terán, Francisco. Nanoscale Advances, 3, 6490 (2021). DOI: https://doi.org/10.1039/d1na00601k

Modelling the role of flux density and coating on nanoparticle internalization by tumor cells under centrifugation. Calvo G.F., Cortés-Llanos B., Belmonte-Beitia J., Salas, Gorka, Ayuso-Sacido Á.. Applied Mathematical Modelling, 78, 98 (2020). DOI: https://doi.org/10.1016/j.apm.2019.10.005

The influence of cation incorporation and leaching in the properties of Mn-doped nanoparticles for biomedical applications. García-Soriano D., Amaro R., Lafuente-Gómez N., Milán-Rois P., Somoza, Álvaro, Navío C., Herranz F., Gutiérrez L., Salas, Gorka. Journal of Colloid and Interface Science, 578, 510 (2020). DOI: https://doi.org/10.1016/j.jcis.2020.06.011

Combining Ag and γ-Fe2O3 properties to produce effective antibacterial nanocomposites. Luengo Y., Sot, Begoña, Salas, Gorka. Colloids and Surfaces B: Biointerfaces, 194, (2020). DOI: https://doi.org/10.1016/j.colsurfb.2020.111178

Heat Generation in Single Magnetic Nanoparticles under Near-Infrared Irradiation. Rodríguez-Rodríguez H., Salas, Gorka, Arias-Gonzalez J.R.. ACS Applied Materials and Interfaces, , 2182 (2020). DOI: https://doi.org/10.1021/acs.jpclett.0c00143

Toxicity of superparamagnetic iron oxide nanoparticles to the microalga Chlamydomonas reinhardtii. Hurtado-Gallego J., Pulido-Reyes G., González-Pleiter M., Salas, Gorka, Leganés F., Rosal R., Fernández-Piñas F.. Chemosphere, 238, (2020). DOI: https://doi.org/10.1016/j.chemosphere.2019.124562

Smartphone-Based Colorimetric Method to Quantify Iron Concentration and to Determine the Nanoparticle Size from Suspensions of Magnetic Nanoparticles. Fernández-Afonso Y., Salas, Gorka, Fernández-Barahona I., Herranz F., Grüttner C., Martínez de la Fuente J., del Puerto Morales M., Gutiérrez L.. Particle and Particle Systems Characterization, 37, (2020). DOI: https://doi.org/10.1002/ppsc.202000032

Aggregation effects on the magnetic properties of iron oxide colloids. Gutiérrez L., De La Cueva L., Moros M., Mazarío E., De Bernardo S., De La Fuente J.M., Morales M.P., Salas, Gorka. Nanotechnology, 30, (2019). DOI: https://doi.org/10.1088/1361-6528/aafbff

Optomagnetic Nanoplatforms for In Situ Controlled Hyperthermia. Ortgies D.H., Terán, Francisco, Rocha U., de la Cueva L., Salas, Gorka, Cabrera D., Vanetsev A.S., Rähn M., Sammelselg V., Orlovskii Y.V., Jaque D.. Advanced Functional Materials, 28, (2018). DOI: https://doi.org/10.1002/adfm.201704434

Optical Trapping of Single Nanostructures in a Weakly Focused Beam. Application to Magnetic Nanoparticles. Rodríguez-Rodríguez H., De Lorenzo S., De La Cueva L., Salas, Gorka, Arias-Gonzalez J.R.. Journal of Physical Chemistry C, 122, 18094 (2018). DOI: https://doi.org/10.1021/acs.jpcc.8b04676

The internal structure of magnetic nanoparticles determines the magnetic response. Pacakova B., Kubickova S., Salas, Gorka, Mantlikova A.R., Marciello M., Morales M.P., Niznansky D., Vejpravova J.. Nanoscale, 9, 5129 (2017). DOI: https://doi.org/10.1039/c6nr07262c

Polyamido amine (PAMAM)-grafted magnetic nanotubes as emerging platforms for the delivery and sustained release of silibinin. Chávez G., Campos C.H., Jiménez V.A., Torres C.C., Díaz C., Salas, Gorka, Guzmán L., Alderete J.B.. Journal of Materials Science, 52, 9269 (2017). DOI: https://doi.org/10.1007/s10853-017-1140-4

Tunable nanocrystalline CoFe2O4 isotropic powders obtained by co-precipitation and ultrafast ball milling for permanent magnet applications. Pedrosa F.J., Rial J., Golasinski K.M., Rodríguez-Osorio M., Salas, Gorka, Granados, Daniel, Camarero, Julio, Bollero, Alberto. RSC Advances, 6, 87282 (2016). DOI: https://doi.org/10.1039/c6ra15698c

Effects of inter- and intra-aggregate magnetic dipolar interactions on the magnetic heating efficiency of iron oxide nanoparticles. Ovejero J.G., Cabrera D., Carrey J., Valdivielso T., Salas, Gorka, Terán, Francisco. Physical Chemistry Chemical Physics, 18, 10954 (2016). DOI: https://doi.org/10.1039/c6cp00468g

The Negishi Catalysis: Full Study of the Complications in the Transmetalation Step and Consequences for the Coupling Products. Del Pozo J., Salas, Gorka, Álvarez R., Casares J.A., Espinet P.. Organometallics, 35, 3604 (2016). DOI: https://doi.org/10.1021/acs.organomet.6b00660

In Vivo Deep Tissue Fluorescence and Magnetic Imaging Employing Hybrid Nanostructures. Ortgies D.H., De La Cueva L., Del Rosal B., Sanz-Rodríguez F., Fernández N., Iglesias-De La Cruz M.C., Salas, Gorka, Cabrera D., Terán, Francisco, Jaque D., Martín Rodríguez E.. ACS Applied Materials and Interfaces, 8, 1406 (2016). DOI: https://doi.org/10.1021/acsami.5b10617

Inducing glassy magnetism in Co-ferrite nanoparticles through crystalline nanostructure. Moya C., Salas, Gorka, Morales M.D.P., Batlle X., Labarta A.. Journal of Materials Chemistry C, 3, 4522 (2015). DOI: https://doi.org/10.1039/c4tc02889a

A Single Picture Explains Diversity of Hyperthermia Response of Magnetic Nanoparticles. Conde-Leboran I., Baldomir D., Martinez-Boubeta C., Chubykalo-Fesenko O., Del Puerto Morales M., Salas, Gorka, Cabrera D., Camarero, Julio, Terán, Francisco, Serantes D.. Journal of Physical Chemistry C, 119, 15698 (2015). DOI: https://doi.org/10.1021/acs.jpcc.5b02555

Safety assessment of chronic oral exposure to iron oxide nanoparticles. Chamorro S., Gutiérrez L., Vaquero M.P., Verdoy D., Salas, Gorka, Luengo Y., Brenes A., José Teran F.. Nanotechnology, 26, 1 (2015). DOI: https://doi.org/10.1088/0957-4484/26/20/205101

BSA-coated magnetic nanoparticles for improved therapeutic properties. Aires A., Ocampo S.M., Cabrera D., Cueva L.D.L., Salas, Gorka, Terán, Francisco, Cortajarena A.L.. Journal of Materials Chemistry B, 3, 6239 (2015). DOI: https://doi.org/10.1039/c5tb00833f

Modulation of magnetic heating via dipolar magnetic interactions in monodisperse and crystalline iron oxide nanoparticles. Salas, Gorka, Camarero, Julio, Cabrera D., Takacs H., Varela M., Ludwig R., Dähring H., Hilger I., Miranda, Rodolfo, Morales M.D.P., Terán, Francisco. Journal of Physical Chemistry C, 118, 19985 (2014). DOI: https://doi.org/10.1021/jp5041234

Efficient and safe internalization of magnetic iron oxide nanoparticles: Two fundamental requirements for biomedical applications. Calero M., Gutiérrez L., Salas, Gorka, Luengo Y., Lázaro A., Acedo P., Morales M.P., Miranda, Rodolfo, Villanueva A.. Nanomedicine: Nanotechnology, Biology, and Medicine, 10, 733 (2014). DOI: https://doi.org/10.1016/j.nano.2013.11.010

Structural disorder versus spin canting in monodisperse maghemite nanocrystals. Kubickova S., Niznansky D., Morales Herrero M.P., Salas, Gorka, Vejpravova J.. Applied Physics Letters, 104, (2014). DOI: https://doi.org/10.1063/1.4881331

Relationship between physico-chemical properties of magnetic fluids and their heating capacity. Salas, Gorka, Veintemillas-Verdaguer S., Morales M.D.P.. International Journal of Hyperthermia, 29, 768 (2013). DOI: https://doi.org/10.3109/02656736.2013.826824

Long term biotransformation and toxicity of dimercaptosuccinic acid-coated magnetic nanoparticles support their use in biomedical applications. Mejías R., Gutiérrez L., Salas, Gorka, Pérez-Yagüe S., Zotes T.M., Lázaro F.J., Morales M.P., Barber D.F.. Journal of Controlled Release, 171, 225 (2013). DOI: https://doi.org/10.1016/j.jconrel.2013.07.019

Short-chain PEG molecules strongly bound to magnetic nanoparticle for MRI long circulating agents. Ruiz A., Salas, Gorka, Calero M., Hernández Y., Villanueva A., Herranz F., Veintemillas-Verdaguer S., Martínez E., Barber D.F., Morales M.P.. Acta Biomaterialia, 9, 6421 (2013). DOI: https://doi.org/10.1016/j.actbio.2012.12.032

Multiparametric toxicity evaluation of SPIONs by high content screening technique: Identification of biocompatible multifunctional nanoparticles for nanomedicine. Prina-Mello A., Crosbie-Staunton K., Salas, Gorka, Del Puerto Morales M., Volkov Y.. IEEE Transactions on Magnetics, 49, 377 (2013). DOI: https://doi.org/10.1109/TMAG.2012.2225024

Accurate determination of the specific absorption rate in superparamagnetic nanoparticles under non-adiabatic conditions. Terán, Francisco, Casado C., Mikuszeit N., Salas, Gorka, Bollero, Alberto, Morales M.P., Camarero, Julio, Miranda, Rodolfo. Applied Physics Letters, 101, (2012). DOI: https://doi.org/10.1063/1.4742918

Synthesis of inorganic nanoparticles. Salas, Gorka, Costo R., del Puerto Morales M.. 0, 4, 35 (2012). DOI: https://doi.org/10.1016/B978-0-12-415769-9.00002-9

Controlled synthesis of uniform magnetite nanocrystals with high-quality properties for biomedical applications. Salas, Gorka, Casado C., Terán, Francisco, Miranda, Rodolfo, Serna C.J., Morales M.P.. Journal of Materials Chemistry, 22, 21065 (2012). DOI: https://doi.org/10.1039/c2jm34402e

Ligand effect on the catalytic activity of ruthenium nanoparticles in ionic liquids. Salas, Gorka,  Campbell P.S.,  Santini C.C.,  Philippot K.,  Costa Gomes M.F.,  Pádua A.A.H.. Dalton Transactions 41 (2012). DOI: https://doi.org/10.1039/c2dt31644g

Influence of ionic association, transport properties, and solvation on the catalytic hydrogenation of 1,3-cyclohexadiene in ionic liquids. Podgoršek A.,  Salas, Gorka,  Campbell P.S.,  Santini C.C.,  Pádua A.A.H.,  Costa Gomes M.F.,  Fenet B.,  Chauvin Y.. Journal of Physical Chemistry B 115 (2011). DOI: https://doi.org/10.1021/jp206619c

Ruthenium nanoparticles in ionic liquids: Structural and stability effects of polar solutes. Salas, Gorka,  Podgoršek A.,  Campbell P.S.,  Santini C.C.,  Pádua A.A.H.,  Costa Gomes M.F.,  Philippot K.,  Chaudret B.,  Turmine M.. Physical Chemistry Chemical Physics 13 (2011). DOI: https://doi.org/10.1039/c1cp20623k

Influence of amines on the size control of in situ synthesized ruthenium nanoparticles in imidazolium ionic liquids. Salas, Gorka,  Santini C.C.,  Philippot K.,  Collière V.,  Chaudret B.,  Fenet B.,  Fazzini P.F.. Dalton Transactions 40 (2011). DOI: https://doi.org/10.1039/c0dt00596g

Enthalpy of ligand substitution in cis organopalladium complexes with monodentate ligands. Salas, Gorka,  Casares J.A.,  Espinet P.. Dalton Transactions (2009). DOI: https://doi.org/10.1039/b910055e

Palladium catalysts for norbornene polymerization. A study by NMR and calorimetric methods. Casares J.A.,  Espinet P.,  Salas, Gorka. Organometallics 27 (2008). DOI: https://doi.org/10.1021/om800264a

Effect of microwave heating in the asymmetric addition of dimethylzinc to aldehydes. Genov M.,  Salas, Gorka,  Espinet P.. Journal of Organometallic Chemistry 693 (2008). DOI: https://doi.org/10.1016/j.jorganchem.2008.03.003

Insights into the mechanism of the Negishi reaction: ZnRX versus ZnR 2 reagents. Casares J.A.,  Espinet P.,  Fuentes B.,  Salas, Gorka. Journal of the American Chemical Society 129 (2007). DOI: https://doi.org/10.1021/ja070235b

Study of the replacement of weak ligands on square-planar organometallic nickel(II) complexes. Organo-nickel aquacomplexes. Casares J.A.,  Espinet P.,  Martínez-Ilarduya J.M.,  Mucientes J.J.,  Salas, Gorka. Inorganic Chemistry 46 (2007). DOI: https://doi.org/10.1021/ic061933k

Stable nickel catalysts for fast norbornene polymerization: Tuning reactivity. Casares J.A.,  Espinet P.,  Martín-Alvarez J.M.,  Martínez-Ilarduya J.M.,  Salas, Gorka. European Journal of Inorganic Chemistry (2005). DOI: https://doi.org/10.1002/ejic.200500121

14-Electron T-shaped [PdRXL] complexes: Evidence or illusion? Mechanistic consequences for the stille reaction and related processes. Casares J.A.,  Espinet P.,  Salas, Gorka. Chemistry - A European Journal 8 (2002). DOI: https://doi.org/10.1002/1521-3765